direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C3×C22⋊C4, C6.12D4, C22⋊2C12, C23.2C6, (C2×C4)⋊1C6, (C2×C6)⋊1C4, (C2×C12)⋊2C2, C2.1(C3×D4), C6.10(C2×C4), C2.1(C2×C12), C22.2(C2×C6), (C22×C6).1C2, (C2×C6).13C22, SmallGroup(48,21)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C22⋊C4
G = < a,b,c,d | a3=b2=c2=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >
Character table of C3×C22⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | -1 | -1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | -1 | -1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 6 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | -1 | 1 | 1 | -1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | -1 | 1 | 1 | -1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ13 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | i | i | -i | -i | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | i | -i | -i | i | -i | i | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | i | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | i | -i | i | -i | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -i | -i | i | i | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | -i | i | i | -i | i | -i | linear of order 4 |
ρ16 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -i | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | -i | i | -i | i | linear of order 4 |
ρ17 | 1 | -1 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | i | i | -i | -i | ζ32 | ζ6 | ζ6 | ζ65 | ζ3 | ζ65 | ζ32 | ζ65 | ζ3 | ζ6 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | linear of order 12 |
ρ18 | 1 | -1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | i | -i | i | -i | ζ3 | ζ65 | ζ65 | ζ6 | ζ32 | ζ6 | ζ65 | ζ32 | ζ6 | ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | linear of order 12 |
ρ19 | 1 | -1 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | -i | -i | i | i | ζ3 | ζ65 | ζ65 | ζ6 | ζ32 | ζ6 | ζ3 | ζ6 | ζ32 | ζ65 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | linear of order 12 |
ρ20 | 1 | -1 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | i | i | -i | -i | ζ3 | ζ65 | ζ65 | ζ6 | ζ32 | ζ6 | ζ3 | ζ6 | ζ32 | ζ65 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | linear of order 12 |
ρ21 | 1 | -1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | -i | i | -i | i | ζ3 | ζ65 | ζ65 | ζ6 | ζ32 | ζ6 | ζ65 | ζ32 | ζ6 | ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | linear of order 12 |
ρ22 | 1 | -1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | -i | i | -i | i | ζ32 | ζ6 | ζ6 | ζ65 | ζ3 | ζ65 | ζ6 | ζ3 | ζ65 | ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | linear of order 12 |
ρ23 | 1 | -1 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | -i | -i | i | i | ζ32 | ζ6 | ζ6 | ζ65 | ζ3 | ζ65 | ζ32 | ζ65 | ζ3 | ζ6 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | linear of order 12 |
ρ24 | 1 | -1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | i | -i | i | -i | ζ32 | ζ6 | ζ6 | ζ65 | ζ3 | ζ65 | ζ6 | ζ3 | ζ65 | ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | linear of order 12 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ27 | 2 | 2 | -2 | -2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 1+√-3 | 1+√-3 | -1-√-3 | -1+√-3 | 1-√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 1+√-3 | -1-√-3 | 1+√-3 | 1-√-3 | 1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ29 | 2 | -2 | -2 | 2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 1-√-3 | -1+√-3 | 1-√-3 | 1+√-3 | 1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ30 | 2 | 2 | -2 | -2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 1-√-3 | 1-√-3 | -1+√-3 | -1-√-3 | 1+√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
(1 6 19)(2 7 20)(3 8 17)(4 5 18)(9 15 21)(10 16 22)(11 13 23)(12 14 24)
(2 12)(4 10)(5 16)(7 14)(18 22)(20 24)
(1 11)(2 12)(3 9)(4 10)(5 16)(6 13)(7 14)(8 15)(17 21)(18 22)(19 23)(20 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,6,19)(2,7,20)(3,8,17)(4,5,18)(9,15,21)(10,16,22)(11,13,23)(12,14,24), (2,12)(4,10)(5,16)(7,14)(18,22)(20,24), (1,11)(2,12)(3,9)(4,10)(5,16)(6,13)(7,14)(8,15)(17,21)(18,22)(19,23)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,6,19)(2,7,20)(3,8,17)(4,5,18)(9,15,21)(10,16,22)(11,13,23)(12,14,24), (2,12)(4,10)(5,16)(7,14)(18,22)(20,24), (1,11)(2,12)(3,9)(4,10)(5,16)(6,13)(7,14)(8,15)(17,21)(18,22)(19,23)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,6,19),(2,7,20),(3,8,17),(4,5,18),(9,15,21),(10,16,22),(11,13,23),(12,14,24)], [(2,12),(4,10),(5,16),(7,14),(18,22),(20,24)], [(1,11),(2,12),(3,9),(4,10),(5,16),(6,13),(7,14),(8,15),(17,21),(18,22),(19,23),(20,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,39);
C3×C22⋊C4 is a maximal subgroup of
C23.6D6 C23.16D6 Dic3.D4 C23.8D6 Dic3⋊4D4 D6⋊D4 C23.9D6 Dic3⋊D4 C23.11D6 C23.21D6 D4×C12 (C2×Q8)⋊C12 SL2(𝔽3)⋊5D4 D14⋊C12 C23.2F7 C22⋊(He3⋊C4)
C3×C22⋊C4 is a maximal quotient of
D14⋊C12 C23.2F7
Matrix representation of C3×C22⋊C4 ►in GL3(𝔽13) generated by
3 | 0 | 0 |
0 | 9 | 0 |
0 | 0 | 9 |
1 | 0 | 0 |
0 | 12 | 0 |
0 | 3 | 1 |
1 | 0 | 0 |
0 | 12 | 0 |
0 | 0 | 12 |
5 | 0 | 0 |
0 | 8 | 1 |
0 | 0 | 5 |
G:=sub<GL(3,GF(13))| [3,0,0,0,9,0,0,0,9],[1,0,0,0,12,3,0,0,1],[1,0,0,0,12,0,0,0,12],[5,0,0,0,8,0,0,1,5] >;
C3×C22⋊C4 in GAP, Magma, Sage, TeX
C_3\times C_2^2\rtimes C_4
% in TeX
G:=Group("C3xC2^2:C4");
// GroupNames label
G:=SmallGroup(48,21);
// by ID
G=gap.SmallGroup(48,21);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,-2,120,141]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations
Export
Subgroup lattice of C3×C22⋊C4 in TeX
Character table of C3×C22⋊C4 in TeX